羅茨真空泵是指具有一對同步高速旋轉的鞋底形轉子的機械真空泵,此泵不可以單獨抽氣,前級需配油封、水環等可直排大氣。原理圖一種型號的外形圖它的結構和工作原理與羅茨鼓風機相似,工作時其吸氣口與被抽真空容器或真空系統主抽泵相接。這種真空泵的轉子與轉子之間、轉子與泵殼之間互不接觸,間隙一般為0.1~0.8毫米;不需要用油潤滑。轉子型線有圓弧線、漸開線和擺線等。漸開線轉子泵的容積利用率高,加工精度易于保證,故轉子型線多用漸開線型。羅茨真空泵的轉速可高達3450~4100轉/分;抽氣速率為30~10000升/秒(1升=10-3米3);極限真空:單級為6.5×10-2帕,雙級為1×10-3帕。
羅茨真空泵的特點是:啟動快,耗功少,運轉維護費用低,抽速大、效率高,對被抽氣體中所含的少量水蒸汽和灰塵不敏感,在100~1帕壓力范圍內有較大抽氣速率,能迅速排除突然放出的氣體。這個壓力范圍恰好處于油封式機械真空泵與擴散泵之間。因此,它常被串聯在擴散泵與油封式機械真空泵之間,用來提高中間壓力范圍的抽氣量。這時它又稱為機械增壓泵。
羅茨真空泵廣泛用于真空冶金中的冶煉、脫氣、軋制,以及化工、食品、醫藥工業中的真空蒸餾、真空濃縮和真空干燥等方面。防止羅茨真空泵過載的措施
【如您需要了解更多關于羅茨真空泵的詳情,可以點擊上圖進行了解】
羅茨真空泵壓縮氣體所需的功率與壓差成正比,一旦氣體壓差過高,泵就可能出現過載現象,造成電機繞組燒損。解決泵過載問題的方法主要有以下幾種:
(1)采用機械式自動調壓旁通閥。旁通閥安裝在羅茨真空泵的出口和入口之間的旁通管路上。此閥控制泵出入口之間的壓差不超過額定值。當壓差達到額定值時,閥門靠壓差作用自動打開,使羅茨真空泵出口和入口相通,使出入口之間的壓差迅速降低,這時羅茨真空泵在幾乎無壓差的負荷下工作。當壓差低于額定值時,閥自動關閉,氣體通過羅茨真空泵內由前級泵抽走。帶有旁通溢流閥的羅茨真空泵可以與前級泵同時啟動,使機組操作簡單方便。
(2)采用液力聯軸器采用液力聯軸器也能防止泵的過載現象發生,使泵可以在高壓差下工作。液力聯軸器安裝在泵和電動機之間。在正常工作狀態下,液力聯軸器由電動機端向泵傳遞額定力矩。羅茨真空泵的最大壓差由液力聯軸器所傳遞的最大轉矩來決定,而液力聯軸器可傳遞的最大轉矩由其中的液體量來調節。當泵在高壓差下工作或與前級泵同時啟動時,在液體聯軸器內部產生了轉速差即滑動,只傳遞一定的力矩,使泵減速工作。隨著抽氣的進行,氣體負荷減小,羅茨真空泵逐漸加速至額定轉速。
(3)采用真空電氣元件控制泵入口壓力在羅茨真空泵的入口管路處安置真空膜盒繼電器或電接點真空壓力表等壓力敏感元件。真空系統啟動后,當羅茨真空泵入口處壓力低于給定值(泵允許啟動壓力)時,壓力敏感元件發出信號,經電氣控制系統開啟羅茨真空泵(如真空系統中裝有羅茨真空泵旁通管路,則同時關閉旁通管路閥門)。若泵入口壓力高于規定值時,則自動關閉羅茨真空泵(或同時打開泵旁通管路閥門),從而保證了羅茨真空泵的可靠運轉。羅茨真空泵的維護保養方法
(一)、羅茨真空泵定期檢查:
1、每日檢查: a)油位檢查:油量過多,使溫度升高,油量過少,造成潤滑不良?! )溫度檢查:用溫度計檢查泵各部位溫度?! )電動機負荷檢查:用功率表或電流,電壓表測量電動機負荷。
2、羅茨真空泵每月檢查: 聯軸器及墊片是否損壞和松動。
3、羅茨真空泵每3個月檢查: 齒輪箱內潤滑油是否變質。
4、羅茨真空泵每6個月檢查: a)前蓋軸承箱內潤滑油是否變質?! )活塞環及活塞環襯套是否磨損。 c)齒輪微量程度的磨損對轉子正常運轉是否產生影響,是否需要調整。
(二)、羅茨真空泵拆裝:
增壓泵進行拆卸和重新裝配時,須根據以下注意事項進行:
1、羅茨真空泵未拆卸前,先測量并記錄轉子各部分間隙。
2、盡量避免用重錘敲打,拆下的零件不得碰傷,妥善保管好。
3、將需要更換的零部件的更換原因及使用情況詳細記錄下來。
4、羅茨真空泵重新裝配前須把各零部件清潔干凈,毛刺修光。
5、無密封墊襯或密封圈的靜密封面用“106”有機硅橡膠涂料。用干凈密封的橡膠密封件,需涂上真空考克脂。帶溢流閥真空泵溢流閥上的密封圈及平面上不得涂任柯油脂。
6、根據間隙一覽表調整轉子各部分間隙。
7、全部裝好后須進行檢漏。
8、重裝后須進行試運轉和必要的性能測試,待正常后才能安裝使用。
注:羅茨真空泵標準號:Q3204AVT002
羅茨真空泵故障原因及其消除方法: 羅茨真空泵故障羅茨真空泵原因羅茨真空泵消除方法極限壓力不高
(1)管道、系統漏氣
(2)泵部分漏氣
(3)前極泵極限壓力下降
(4)潤滑油太臟或牌號不符
(5)油封磨損
(6)溢流閥處漏氣(
1)系統檢漏
(2)對泵檢漏
(3)修理或更換前級泵
(4)調換潤滑油
(5)調換油封
(6)對溢流閥進行清理抽速不足
(1)管道通導能力不夠
(2)前級泵抽速下降
(3)溢流閥處漏氣
(1)增大管道通導能力
(2)修理或更換前級泵
(3)對溢流閥處進行清理電動機過載
(1)入口壓力過高
(2)轉子端面與端蓋單面接觸
(3)前級泵返油進泵腔
(4)溢流閥卡住,使出口過高
(1)調整、控制入口壓力
(2)調整轉子端面間隙
(3)裝置防返油設備
(4)對溢流閥進行清理過熱
(1)選擇的前級泵抽速不夠,造成壓縮比過大
(2)入口壓力過高
(3)冷卻不良
(4)齒輪箱潤滑油過高
(5)轉子與泵殼接觸
(6)齒輪、軸承、油封潤滑不良
(1)重新選用前級泵
(2)調整、控制入口壓力
(3)暢通冷卻
(4)調整油量
(5)修整
(6)保證油量適當,潤滑良好聲音異常
(1)裝配不良
(2)導向齒輪與轉子位置偏移使轉子相碰
(3)入門壓力過高
(4)過載或潤滑不良造成對齒輪的損傷
(5)軸承磨損
(1)重裝
(2)調整位置,保證間隙
(3)調整、控制入口壓力
(4)調換齒輪
(5)調換軸承軸承、齒輪早期磨損嚴重
(1)潤滑油不良
(2)潤滑油不足
(1)調換潤滑油
(2)補充潤滑油結構特點
(1)在較寬的壓力范圍內有較大的抽速;
(2)轉子具有良好的幾何對稱性,故振動小,運轉平穩。轉子間及轉子和殼體間均有間隙,不用潤滑,摩擦損失小,可大大降低驅動功率,從而可實現較高轉速;
(3)泵腔內無需用油密封和潤滑,可減少油蒸氣對真空系統的污染;
(4)泵腔內無壓縮,無排氣閥。結構簡單、緊湊,對被抽氣體中的灰塵和水蒸汽不敏感;
(5)壓縮比較低,對氫氣抽氣效果差;
(6)轉子表面為形狀較為復雜的曲線柱面,加工和檢查比較困難。羅茨真空泵近幾年在國內外得到較快的發展。在冶煉、石油化工、電工、電子等行業得到了廣泛的應用。
羅茨真空泵的結構
羅茨真空泵的兩個轉子在泵體中如何布置,決定了泵的總體結構。目前國內外羅茨真空泵的總體結構布置一般有三種方案:
1.立式:兩個轉子的軸線呈水平安裝,但兩個轉子軸線構成的平面與水平面垂直,這種結構,泵的進排氣口呈水平設置,裝配和連接管道都比較方便。但其缺點是泵的重心太高,在高速運轉時穩定性差,所以目前除小規格的泵外,采用這種結構型式的不太多?! ?.臥式:兩個轉子的軸線呈水平安裝,兩個轉子軸線構成的平面成水平方向,這種結構的泵的進氣口在泵的上方,排氣口在泵的下方(也有與此相反的)。下邊的排氣口一般為水平方向接出,所以進排氣方向是相互垂直的。排氣口接一個三通管向兩個方向開口,一端接排氣管道,另一端死或接旁通閥時使用。這種結構的特點是重心低,高速運轉時穩定性好。目前國內外大中型泵多采用此種結構型式。
3.豎軸式:國外有的羅茨泵的兩個轉子軸線與水平面垂直安裝。這種結構的裝配間隙容易控制,轉子裝配方便,占地面積小,但齒輪等傳動機構裝拆不便,潤滑裝置也較復雜。
當總體結構決定后,泵體本身的結構與形狀也就相應地決定了。
4.帶溢流閥的羅茨泵:為了防止超載引起事故,羅茨泵上裝有一個比較可靠的安全保護器,即在旁通管路上裝有一個溢流閥。排氣口處于規定壓力時,溢流閥是關閉的。當其排氣口壓力超過規定壓力時,則溢流閥的閥門自動被頂開而產生溢漢,排氣口壓力變正常后,溢流閥再自行關閉。它能自動調節,也是泵的允許壓差裝置,因此溢流閥的最大好處是使羅茨泵能連同前級泵一起,在各種壓力范圍內能連續運轉。采用這種設計,能使真空容器在粗真空狀態的抽氣停息時間可縮短30~50%.對于比較大的泵,溢流閥安裝在泵體外邊的旁通管路上,在比較小的泵上,溢流閥則是裝在泵殼內的。
5.帶蒸汽冷凝器的羅茨泵:在需要抽吸蒸汽情況下,抽氣機組必須設計會使蒸汽冷凝的冷凝器,這個冷凝器可裝在泵之前或裝在泵之后,而不裝在羅茨泵的泵體上。
在某種情況下,冷凝特升化吸熱能夠減少羅茨泵發熱。假設采用了復式冷凝器,在維修時可用適當的溶劑清除污垢,蒸汽就能順暢地在導管中流動?!奶卣髑€可以看出當達到極限真空時,通過泵入口的正向氣流量為零,既泵的實際抽速為零,式:PC和PR事實就是前級泵和羅茨真空泵的極限壓力,達到極限真空是幾乎為分子流狀態,將其導通能力帶入式中:SJ—理論抽速 P0—羅茨真空泵的極限壓力 P0φ—前級真空泵的極限壓力 11.6F—20℃時空氣的導通能力
因此選擇不同的前級泵可以獲得不同的極限真空羅茨真空泵的冷卻裝置:
1.空氣冷卻:羅茨真空泵由于輸送和壓縮氣體而產生熱量,這些熱量必須從轉子傳至殼體而散發。但在低壓下,氣體對熱的傳導和對流性能極差,致使轉子吸收的熱量不易散出,造成轉子溫度永遠高于殼體的溫度。由于轉子的熱膨脹,使轉子與轉子間、轉子與泵殼間的間隙減少,特別在壓差也高的情況下,尤為嚴重,甚至造成轉子卡死,使泵損壞。為了使羅茨泵在較高的壓差下工作,以擴大使用范圍,增加泵的可靠性,就必須設法散出轉子產生的熱量,也就是說要對轉子進行冷卻。
為了理解空氣冷卻的實質,先來看一下氣體在羅茨真空泵排氣一側的流動情況,在羅茨真空泵中吸入氣體被壓縮的過程不是連續的,而是突然的。吸入氣體隨轉子轉動而被封閉于腔內,又隨轉子的旋轉,使腔內的氣體突然與排氣口接通。由于排氣一側的氣體壓力較高,排氣口處的氣體就向腔中返沖,然后又隨著轉子的旋轉而被驅趕排出泵外。這樣的過程在每旋轉一周中兩個轉子共進行四次排氣過程。
從上述氣體的流動情況可以設想:假若每次返沖到泵腔中的氣體是冷的,則可以在高溫的泵腔內吸收大量的熱量,這些吸收了熱量的氣體又在轉子的繼續壓縮中排出,從而會達到轉子冷卻的目的。
空氣冷卻就是運用上述原理。在泵的排氣口處設置密集的冷卻片,冷卻片用冷水管進行冷卻,或在泵的排氣口處直接安裝冷卻水管,這樣排氣口處的氣體就會降溫,這種冷卻方法能有效地散出羅茨泵轉子在壓縮氣體中所產生的執量。而且當排氣壓力較高時,因氣體分子的密度大,使熱傳導性能更好,其冷卻效果也好些。使用這種方法能保證泵在較高的壓差下作,實驗證明,一臺羅茨泵在30Torr壓差下運轉6h,其轉子在外殼的溫度差為22度,當在排氣口處安裝冷卻器后,在85Torr壓差下長其運轉,其溫差也不超過17度。一般說來,羅茨真空泵采用空氣冷卻之后,可將壓差提高80Torr,而不加冷卻器一般只能達到15~30Torr。
這種冷卻方法與環境溫度有關系,環境溫度高吸入的氣體溫度就高。則冷卻效果就不好。此外,這種方法只能避免高壓差產生的高熱,而不能防止泵壓縮過程中發熱,而引起間隙變小的問題,所以受泵本身間隙的限制。
2.轉子的內部冷卻:為了使羅茨真空泵在更高壓差下工作,可采取更有效的冷卻方法,即將轉子用循環油冷卻,在泵軸兩端分別有油孔、油徑軸頭打入,經轉子內壁再從另一端排出。冷卻油除冷卻轉子外,還潤滑齒輪和軸承。這種冷卻效果較好,泵在運轉時轉子溫度低于外殼溫度,大泵常采用這種方式。例如在80Torr壓差下工作時,羅茨真空泵轉子溫度較外殼低78度,同時還發現泵負荷越重時,則間隙越大,這是因為轉子用油冷卻,溫度比殼體低,負荷越大,殼體膨脹越厲害,軸間距加大,所以間隙會增大。
由于負荷大,轉子和殼體溫差不斷增高,使間隙不斷增大,這會使首逆流增大,引起羅茨真空泵抽速下降。為了克服這個缺點,羅茨泵在高負荷下工作時,需要采用有效措施,一般是將羅茨真空泵的外殼和轉子同時采用油循環系統進行冷卻。
3.轉子的油膜冷卻:這種冷卻方法是在羅茨真空泵入口處連接一個輸油管,用均勻滴下的冷卻油帶走轉子的熱量。油經過濾器器、冷卻器,通過密封良好的油泵,再經過辦輸油管將油送到泵的入口。油滴到轉子上之后,隨著轉子的旋轉而均面在轉了子的表面上。這不僅將轉子的熱量帶走,同時在兩個轉子表面上形成油膜,防止氣體的逆流,而且還能將轉子表面上依附的微細塵埃帶走。在泵的出口處設有油槽,收集廢油,經過過濾,冷卻后重新循環使用。此種方法效果良好。但由于泵內有油,失去了羅茨泵無油蒸汽污染真空系統的特點。再則油具有一定的粘度,對高速旋轉的羅茨泵轉子增加了不少的摩擦力,當然使泵的功率消耗增加。所使用的油,要求飽和蒸汽壓應盡量代。
4.水冷卻:所謂濕式羅茨真空泵,即是由間級或雙級泵吸入的空氣經壓縮后,通過綜合吸收及有相位差的組合消音器傳送。將微量的水注入泵內,便能消除因壓縮空氣而產生的熱量。吸入水管裝在單級或雙級泵組的吸氣端并連接到真空泵的進氣口上。水是靠真空泵產生的真空度而吸入,真空度越大,吸入水量就越高。用一只簡單的調節閥門便能保證最佳的吸入量,吸入水的溫度應保持在20度左右,要清潔,無鈣質。